cuisto.compute
compute module, part of cuisto.
Contains actual computation functions.
get_distribution(df, col, hue, hue_filter, per_commonnorm, binlim, nbins=100)
#
Computes distribution of objects.
A global distribution using only col
is computed, then it computes a distribution
distinguishing values in the hue
column. For the latter, it is possible to use a
subset of the data only, based on another column using hue_filter
. This another
column is determined with hue
, if the latter is "hemisphere", then hue_filter
is
used in the "channel" color and vice-versa.
per_commonnorm
controls how they are normalized, either as a whole (True) or
independantly (False).
Use cases :
(1) single-channel, two hemispheres : col=x
, hue=hemisphere
, hue_filter=""
,
per_commonorm=True
. Computes a distribution for each hemisphere, the sum of the
area of both is equal to 1.
(2) three-channels, one hemisphere : col=x
, hue=channel
,
hue_filter="Ipsi.", per_commonnorm=False
. Computes a distribution for each channel
only for points in the ipsilateral hemisphere. Each curve will have an area of 1.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
|
required |
col
|
str
|
Key in |
required |
hue
|
str
|
Key in |
required |
hue_filter
|
str
|
Further filtering for "per" distribution. - hue = channel : value is the name of one of the hemisphere - hue = hemisphere : value can be the name of a channel, a list of such or "all" |
required |
per_commonnorm
|
bool
|
Use common normalization for all hues (per argument). |
required |
binlim
|
list or tuple
|
First bin left edge and last bin right edge. |
required |
nbins
|
int
|
Number of bins. Default is 100. |
100
|
Returns:
Name | Type | Description |
---|---|---|
df_distribution |
DataFrame
|
DataFrame with |
Source code in cuisto/compute.py
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
|
get_regions_metrics(df_annotations, object_type, channel_names, meas_base_name, metrics_names)
#
Derive metrics from meas_base_name
.
The measurements columns of df_annotations
must be properly formatted, eg :
object_type: channel meas_base_name
Derived metrics include : - raw measurement - areal density - relative raw measurement - relative density
Supports objects that are counted (polygons or points) and objects whose length is measured (fibers-like).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df_annotations
|
DataFrame
|
DataFrame with an entry for each brain regions, with columns "Area µm^2", "Name", "hemisphere", and "{object_type: channel} Length µm". |
required |
object_type
|
str
|
Object type (primary classification). |
required |
channel_names
|
dict
|
Map between original channel names to something else. |
required |
meas_base_name
|
str
|
Base measurement name in the input DataFrame used to derive metrics. |
required |
metrics_names
|
dict
|
Maps hardcoded measurement names to display names. |
required |
Returns:
Name | Type | Description |
---|---|---|
df_regions |
DataFrame
|
DataFrame with brain regions name, area and metrics. |
Source code in cuisto/compute.py
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 |
|
normalize_starter_cells(df, cols, animal, info_file, channel_names)
#
Normalize data by the number of starter cells.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df
|
DataFrame
|
Contains the data to be normalized. |
required |
cols
|
list - like
|
Columns to divide by the number of starter cells. |
required |
animal
|
str
|
Animal ID to parse the number of starter cells. |
required |
info_file
|
str
|
Full path to the TOML file with informations. |
required |
channel_names
|
dict
|
Map between original channel names to something else. |
required |
Returns:
Type | Description |
---|---|
DataFrame
|
Same |